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Abstract. The minimal energy configurations of finite Nv-body vortices in a rotating trapped Bose-Einstein
condensate is studied analytically by extending the previous work [Y. Castin, R. Dum, Eur. Phys. J. D 7,
399 (1999)], and taking into account the finite size effects on z-direction and the bending of finite vortex
lines. The calculation of the energy of the vortices as a function of the rotation frequency of the trap gives
number, curvature, configuration of vortices and width of vortex cores self-consistently. The numerical
results show that (1) the simplest regular polynomial of the several vortex configurations is energetically
favored; while the hexagonal vortex lattice is more stable than square lattice; (2) bending is more stable
then straight vortex line along the z-axis for λ < 1; (3) the boundary effect is obvious: compared with the
estimation made under infinite boundary, the finite size effect leads to a lower vortex density, while the
adding vortex bending results in a less higher density because of the expansion. The results are in well
agreement with the other authors’ ones.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

Vortices (in two spatial dimensions, 2D) and vortex lines
(in three spatial dimensions, 3D) are formed in a Bose-
Einstein condensate (BEC) by stirring the trapped BEC
with laser beam. Depending on the angular frequency (Ω)
of the stirring beam, it is possible to generate configura-
tions with different numbers of vortices (Nv) which form
finite-size crystallization with different structures. In the
past few years, vortex experiments in the trapped BEC
have ranged from the study of individual or few vor-
tices [1–4] and vortex rings [5,6] to the study of vortex lat-
tices [7–11]. Various theoretical studies have been made in
the field of many-body physics based on Gross-Pitaevskii
(GP) mean-field model by a single macroscopic wave func-
tion Ψ(r) = |Ψ(r)|eiφ(r), imposing strong constraints upon
its velocity field v = �∇φ/M (for a review, see, for
example, [12]; for some fundamental concepts, see, for ex-
ample, [13]). Theoretical investigations of vortex stability
have been previously restricted to the case of a single vor-
tex, either from a purely analytical point of view, such
as in [14–16]; or by mixing analytical and numerical tech-
niques [17–19]. The static and dynamic properties of the
trapped BEC with the vortex lattice [20–26] as well as vor-
tex lattices of spinor, multicomponent condensates [27–29]
and multiquantum vortices [30] have being under exten-
sive theoretical study. The presence of melting of the vor-
tex lattice [31,32] and stripes of the vortex array [33,34]
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has also being investigated. Theoretical approaches in
nonlinear dynamics [35–39] help us to understand the for-
mation process of the vortex lattice in short- [33] and
long- [10] lived regions. A U- or S-shaped vortex (bending
and derivation from the center) has been observed un-
der a certain Ω at different times [40,41]. Bent vortices
were first studied numerically in [42,43] and analytically
in [44], including the vortex shapes, configurations and
energy diagram [45,46]. For describing the final equilib-
rium state, there have been several theoretical attempts
[47–50], much attention focus on the effects of finite vor-
tex number and condensate size numerically. However, the
total energy functional for the vortex lines are still more
complicated [44,45,51] when taking into account the ef-
fect of the shape of the vortex lines. The aim of this work,
in analytical means, is to clearly understand the station-
ary configurations of the BEC rotating at a frequency Ω
with finite number of vortices and bending of finite vortex
lines located within finite sizes both in the xy-plane and
in z-direction.

One effective way in analytic expression for the equi-
librium properties of the system is to solve the GP equa-
tion based on a certain variational ansatz. Simple ansatz
using Heaviside step function [21] or linear function [22]
to coarsely approximate the density distribution within
the vortex core have been used to study vortex proper-
ties in rotating BECs. While these early investigation re-
main in the regime of Wigner-Seitz approximation (round
the lattice cells), a better ansatz using tanh function
to approximate the variation of density near the vortex
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core [20] was shown to be capable of studying the actual
configuration in 2D. An extend numerical work provided
a mathematical framework [45]. Our present work will in-
herit this intuitive ansatz and extend the originally 2D
results to a finite 3D system with finite number of vor-
tices and finite bent vortex lengths. In other words, our
system is confined in an ellipsoidal harmonic oscillatory
trap with trapping potentials in three directions, instead
of a flat trap with much stronger trapping potential along
z-axis. Both finite size effect along z-direction and the
bending of vortices will affect the configuration of vortices
on the xy-plane, which is unique for 3D case. Within the
condensate region, we take the vortex lines as curved seg-
ments along the z-axis with different lengths, core widths
and curvature at different positions on the xy-plane. We
consider BEC at zero temperature in the Thomas-Fermi
(TF) regime, where the interaction energy is very large
compared to the external trap potential. The condensate
is rotated at varying angular frequencies Ω. At relatively
small Ω, the condensate contains several vortices and we
are able to determine their actual number and configu-
ration by comparing the different local energy minimum
of the different structures. For a greater Ω correspond-
ing to a larger number of vortices (≈102), it is difficult
to determine the actual configuration. The amount of cal-
culation grow in a geometric order with vortex numbers,
which prevents the intervortex separation and curvature
to be determined self-consistently.

By carrying out the finite-Nv calculation including the
finite-size effect both in the xy-plane and in the axis of
rotation z, it is shown that (1) configurations take the
simplest regular polynomial shape in the case of several
vortices; (2) triangular “unit cells” are energetically more
stable than square “unit cells” regardless of other con-
ditions for the same number of vortices at large enough
rotation frequency; (3) bending vortex lines become en-
ergetically favorable, and the vortex configuration in the
xy-plane has slight expands with the increase of z, espe-
cially, when λ < 1 where the bending first increases and
then decreases with increasing rotation frequency; (4) the
boundary effect of the condensate causes significant de-
crease in vortex density than estimated with the infinite
boundary, the decrease is less significant when bending of
vortex line is considered [52], and the vortex core width
first decreases and then increases with increasing rotation
frequency [21,22]; (5) plot of Nv vs. Ω agree well with
numerical simulations.

The arrangement of the paper is as follows. We take
in Section 2 an ansatz for wave function of the BEC and
derive analytically the energy function including the self
energy and interaction energy of the vortices by using a
variational method. In Section 3 we calculate the min-
imal energy with different structures to determine self-
consistently the number of vortices Nv, vortex configura-
tions, intervortex separation b, vortex curvature kj , and
vortex core half-width ξ as a function of drive force Ω,
all of which coincide with the numerical simulations with
adjustable stirring angular frequency Ω. In Section 4 we
end with a conclusion.

2 Model and method

The Hamiltonian density of a rotating trapped BEC can
be given by

Ĥ =
1

2M
|(−i�∇− MΩ× r)Ψ(r)|2 + [Uext(r)

−1
2
MΩ2s2 − µ]|Ψ(r)|2 +

1
2
g|Ψ(r)|4. (1)

The trapping potential Uext(r) = 1
2Mω2

⊥(s2 + λ2z2) for
spherical trap (λ = 1) and ellipsoidal trap (λ �= 1). The
interaction between bosons is described through the cou-
pling constant g related to the s-wave scattering length
asc in the form g = 4π�

2asc/M .
A Heaviside step function [21] or linear function [22]

for the density distribution |Ψ(r)|2 within the vortex core
is too simple to describe the system. We adopt an ansatz
constructed by Castin et al. [20] in which the density is

|Ψ(r)|2 = |Ψslow(r)|2
Nv∏

j=1

tanh2 |s− sj |
ξj

. (2)

Here sj is the position of the jth vortex on the xy-
plane and ξj is the half-width of the vortex core and are
both introduced as variational parameters. |Ψslow(r)|2 ∼=
µ0
g (1−s̄2−z̄2) is the TF density of BEC with 0-vortex [21],

which appears to be a slow varying envelope. Here the di-
mensionless coordinates s̄ ≡ s

R⊥
and z̄ ≡ z

Rz
are in units

of TF radius of the condensate: RTF = [2µ/(Mω2
⊥)]1/2,

R⊥ = RTF /(1 − Q2)1/2 and Rz = RTF /λ. Q = Ω/ω⊥ is
the rotation frequency in unit of ω⊥. µ is related to both
the bending of the vortex and the chemical potential of
BEC with no vortex µ0, as is shown below in equation (3).
From the normalization condition N =

∫
d3r|Ψ(r)|2 we

have µ0 = 1
2�ω⊥(15λP )2/5. P = Nasc/aho is the di-

mensionless interaction parameter. aho =
√

�/Mω⊥ is
the trapping characteristic length. In the TF regime the
number of particles N forming the condensate approaches
infinitely large, the interaction between particles is dom-
inant as compared to the trap potential. Since asc/aho �
10−4 in most experiments, P should be a finite large num-
ber.

By introducing the curvature of the j’th vortex kj , the
bending vortex line can be described with the vortex dis-
placement field u(r), indicating the derivation of vortex

from its original position: u(r) = Rz

Kj
(1 −

√
1 − K2

j z̄2) for
the axial symmetrical system u(r) = (x̂ + ŷ)u(r), where
Kj = kjRz are independent on r when u(r) � RTF . The
general form of the phase φ is φ = φ0 +

∑Nv

j=1(kjsϕ + θj),
where θj are the relative polar angle of a system of Carte-
sian coordinates centered on the vortex core, ϕ is the polar
angle of the system centered on the trapping center, and
φ0 is the single value part of the phase. For axial symme-
try, φ0 = 0. We will see below that the bending vortices
are more stable than straight vortices when λ < 1 and
that the phase shift kjsϕ will play an important role in
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lowering the total vortex energy. For small vortex displace-
ment field u(r) and for ξj � b, the bending can be viewed
as elastic deformation, thus the vortex line bending ten-
sion is [53] τ = �Ω|Ψ(r)|2 ln aΩ

ξ with aΩ =
√

�/MΩ and
the corresponding elastic energy has a simple form [54,55]
εel(r) = τ (∂u

∂z )2. By adding this elastic energy term to
the Hamiltonian (1), and substituting the trial wave func-
tion (2), we obtain the chemical potential

µ = µ0

⎡

⎣1 − 5(ln 2)
Nv∑

j=1

γj ξ̄
2
j(1 − s̄2

j)
3/2

⎤

⎦
−2/5

. (3)

In the deduction of equation (3) we have used the position
of the vortex s̄j = sj

R⊥
and radius of the vortex ξ̄j =

ξj

R⊥
in units of TF radius of the condensate in the xy-

plane. The dimensionless parameter defined as γj = (1 +
K2

j
�Ω
µ ln aΩ

ξ )−1/2 returns to γj = 1 of the straight vortex
line for kj = 0. The normalization integration and hence
the energy integration below are carried out within the
ellipsoid of s̄2 + γ−2

j z̄2 ≤ 1 when taking into account both
the finite-size effect and the bending effect.

By separating the phase and modulus of the wavefunc-
tion in equation (1) with elastic energy added, one obtains

Ĥ =
Nv∑

j=1

{
�

2

2M
|Ψ(r)|2

[
|∇j ln |Ψ(r)||2 + |∇θj |2

+kj

(
kj +

2
s

∂θj

∂ϕ

)
+

Nv∑

j′ �=j

(∇θj) · (∇θj′)
]

−�Ω|Ψ(r)|2
[∂θj

∂ϕ
−

(∂u

∂z

)2

ln
aΩ

ξ
+ kjs

]

+[Uext(r) − µ]|Ψ(r)|2 +
1
2
g|Ψ(r)|4

}
. (4)

By substituting the ansatz (Eq. (2)) into equation (4), we
calculate the total energy of the system per particle in the
form E = µ0+

∑Nv

j=1 W (sj)+
∑Nv

j �=j′=1
V (sj , sj′). Here the

self energy of the system W (sj) is obtained through inte-
grating the jth vortex in the Hamiltonian density equa-
tion (4), and the interaction energy V (sj , sj′ ) between the
jth and the j′th vortex comes from the crossover term∑Nv

j′ �=j
(∇θj) · (∇θj′ ). The integration of the term |∇θj |2

diverges at the center of the vortex. The usual cutoff is
at s̄ = s̄j + αξ̄j . The parameter α should be chosen to be
self-consistent with the cutoff effect in the different posi-
tions of the vortices. Since 0 < ξ̄j � 1, the cutoff requires
usually αξ̄j � 1 for s̄j < 1. But for s̄j � 1 the position of
outside vortices is nearest to the boundary of the conden-
sate when the vortices fill the whole xy-plane, the cutoff
requires 0 < α � 1 in a self-consistent manner. Different
values of α in this region will have some slight impact on
the results but do not alter the main characteristics of the
system.

Carrying out the integral within the ellipsoid by use of
the cutoff, the self-energy W (sj) can be written as

W (sj) =
�ω⊥γj

6λP

(
2µ

�ω⊥

)3/2
⎧
⎨

⎩
4
3
− s̄2

j

+ (1 − s̄2
j)

3/2

⎡

⎣1
3

ln 2 − 5
2
− ln

1 +
√

1 − s̄2
j

2(1 − s̄2
j)

αξ̄
2
j

⎤

⎦

⎫
⎬

⎭

+
10µ2γj

�ω⊥

(
µ

µ0

) 3
2

[
15λP

1 − Q2

]− 2
5

×
{

ξ̄
2
j (1 − s̄2

j)
3
2

ln 2
1 − Q2

+ ξ̄
2
j(1 − s̄2

j)
5
2

[
4 ln 2 − 1

15

+
ln 2
5λ2 − ln 2

1 − Q2

]}
− �Ωγj(

µ

µ0

)5/2(1 − s̄2
j)

5/2

+ γj

[
5(�ω⊥)2

√
1 − Q2KjIj

8µ
+ λ2K2

j

(�ω⊥)2

4µ

− 5π

128
Kj�Ω√
1 − Q2

]
+

15
8

�ω⊥
Q

1 − Q2
ln

(
aΩ

ξj

)
Jj , (5)

in which Ij ≡ ∫ π
2

arcsin s̄j
cos4 ϕdϕ and Jj ≡ 1

2Kj
[(1 −

1
c2

j
)2(arctanhcj−cj)+

7cj

15 − 1
3cj

] with cj = Kjγj . Note that

Jj � 1
2γj(

1
3c2

j − 1
5 ) for cj → 0. The term − 5π

128
�Ω√
1−Q2

Kjγj

in equation (5) coming from the term −�Ω|Ψ(r)|2kjs in
equation (4) dominates the bending originally from the
phase shift of kjsϕ.

By carefully handling the integral of the interaction
term, the explicit expression for the interaction energy
V (sj , sj′ ) is

V (sj , sj′) = −�ω⊥γj(1 − Q2)3/5 5(µ/µ0)
3/2

2(15λP )2/5

×
{[

2ρj

(
1
3
ρ2

j + fr

)

−
(

1
3

+ fr

)
+

Ijj′

s̄j s̄j′ sin θjj′

]
+

[
2ρj′

(
1
3
ρ2

j′ + fr

)

−
(

1
3

+ fr

)
+

Ij′j

s̄j s̄j′ sin θjj′

]}
. (6)

Here ρj ≡
√

1 − s̄2
j , f ≡ 1 − s̄j s̄j′e

−iθjj′ , fr = Re f and
fi = Im f , and θjj′ is the angle between the vectors sj and
sj′ . Taking ϕjj′ ≡ arctan s̄j s̄j′ sin θjj′

1−s̄j s̄j′ cos θjj′
and letting

X± ≡
[
± ρ2

j − ρj(2 − ρj)
√

|f | cos
ϕjj′

2

± (1 − 2ρj) |f | cosϕjj′ + |f | 32 cos
3ϕjj′

2

]

and

Y± ≡
[
− ρj(2 − ρj)

√
|f | sin ϕjj′

2

± (1 − 2ρj) |f | sin ϕjj′ + |f | 32 sin
3ϕjj′

2

]
,
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Ijj′ has the form

Ijj′ ≡ 1
2

√
|f |

{
(f2

r − fi
2 + |f |fr)

×
(
sin

ϕjj′

2

)
ln

√
X2

+ + Y 2
+

X2− + Y 2−
+ (f2

r − fi
2 − |f |fr)

×
(
cos

ϕjj′

2

)(
arctan

Y+

X+
− arctan

Y−
X−

) }
. (7)

Because of the finite-size effect of the ellipsoidal trap,
equation (6) is much more complicated than equation (67)
in [20]. In two special cases, equation(6) takes a simpler
form:

(i) for θjj′ = 0 or θjj′ = π, i.e., the two position vectors
pointing to the two vortices considered are in the same
or opposite direction,

Vline(sj , sj′ ) = −�ω⊥γj(1 − Q2)3/5 5(µ/µ0)3/2

2(15λP )2/5

×
{
−2(

1
3

+ f)+2f(ρj+ρj′)+
2
3
(ρ3

j +ρ3
j′)

+ f
3
2 ln

[√
f − ρj√
f + ρj

√
f − ρj′√
f + ρj′

1 +
√

f

1 −√
f

]}
(8)

with f = 1 − s̄j s̄j′ ;
(ii) for s̄j′ = 0, i.e., when one of the two vortices is located

at the center of the BEC,

V (sj , 0) = −�ω⊥γj(1 − Q2)3/5 5(µ/µ0)3/2

2(15λP )2/5

×
⎡

⎣2
3
(4 − s̄2

j)
√

1 − s̄2
j + ln

1 −
√

1 − s̄2
j

1 +
√

1 − s̄2
j

⎤

⎦ . (9)

With the explicit expression of the total energy E, we
are, in principle, able to evaluate the values of jth vortex
kj and ξj through

∂E

∂(kj , ξj)
= 0,

∂2E

∂(kj , ξj)2
> 0. (10)

From equation (3), the chemical potential µ can only be
determined after the kj and ξj of every vortex are deter-
mined beforehand. Therefore the calculation is to solve
an “integral equation with unknown upper integral limit”
Nv. The minimal energy function by a drive force Q de-
pends on the number of vortices Nv, vortex configura-
tions, intervortex separation b, vortex core half-width ξj ,
and the bending related parameter γj after carrying out
the self-consistent calculation on chemical potential µ. By
assuming the dimensionless curvature of the vortex lat-
tice is K through the curvature kj = Ks̄j/Rz, one has
u(rj) � 1

2RzKs̄j z̄
2
j . This means that bending of vortex

occurs at the boundary of the condensate. In the next sec-
tion we will calculate the minimal Gross-Pitaevskii energy
E(Nv, b, kj , ξj) variationally as a function of Ω.
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E

Fig. 1. The total energy E in unit of �ω⊥ vs. the distance b
in unit of R⊥ with Q = 0.47, λ = 1 and P = 100.
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0.5

0.6

V

Fig. 2. The interaction energy V in unit of �ω⊥ vs. the dis-
tance b in unit of R⊥ between two symmetrically placed vortex
with Q = 0.47, λ = 1 and P = 100.

3 Results and discussion

Most experimental observation of vortex lattices are gen-
erated within a condensate of moderate number of parti-
cles, therefore in the following calculation, we take P =
100, 500, 1000 respectively in most cases. Forming a vortex
lattice requires, in principle, that a unit cell be infinitely
replicated. In our case with finite number of vortices and
finite condensate size, the concept of vortex lattice is a
good approximation for the large number of vortices.

Since we account for the interaction energy of every
two of the vortices, the amount of calculation grow in a
geometric order with vortex number. To cope with this dif-
ficulty, we first look into the case with several vortices for
which the concept of lattice is barely relevant but the cal-
culation is simple, and thus can be studied more carefully
in the whole parameter range. We then study the change
in vortex number to the increase of rotation frequency at
fixed configuration of hexagonal unit cells for the large and
finite number of vortices in the small parameter range.

Curves in Figures 1 and 2 show the total energy E
and interaction energy V as a function of the distance
between two straight vortices that are symmetrically dis-
placed by b/2 from the trap center. The self-energy W
dominates the steady state configuration. The minimizers
of E correspond to a series of Nv, b and ξj for changing the
values of Q. When placed close enough the interaction di-
verges logarithmically, at a finite distance the interaction
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Fig. 3. (Color online) Local en-
ergy (near minima) in unit of
�ω⊥ vs. the distance b in unit
of R⊥ with λ = 1, P = 500, and
Nv = 2 (blue), 3 (green), 4 (red),
5 (gray) in the different driving
forces Q.

is purely repulsive, and to cross over a certain distance
apart the interaction turns into slightly attractive due to
the boundary effect.

3.1 The critical frequencies (Nv = 1)

The critical frequency Ωc is defined as the rotation fre-
quency above which the single vortex solution has an en-
ergy lower than the condensate without vortex[20]. From
the condition W = 0 at s̄j = 0 we get Ωc/ω⊥ =
(5µ0/6µ)(15λP )−2/5[3 ln(2/αξ̄) − 2 + ln 2] and calculate
Ωc/ω⊥ = 0.520, 0.352, 0.289 for P = 100, 500, 1000 re-
spectively. Another frequency suggested in [20] is Ωstab

above which the vortex is a local minimum of energy, cal-
culated from the condition dW/ds̄j = 0 at s̄j = 0. That
is Ωstab/ω⊥ = (µ0/2µ)(15λP )−2/5[3 ln(1/αξ̄)− 5/2+ ln2]
and has values Ωstab/ω⊥ = 0.346, 0.217, 0.175 for P =
100, 500, 1000 respectively. Ωstab = (3/5)Ωc in the limit
of αξ̄ → 0 is estimated the same as predicted [12]. The
critical frequencies are very close to the values in [20,45].

3.2 Case with several vortices (Nv = 2–7)

The local energy minimum of the system with Nv vortices
under a certain rotation frequency Q is obtained through
a three dimensional variation calculation. The variation
parameters are the separation of the vortices in the TF
units b̄, the vortex curvature k and the core width ξ. Since
we consider only the regular vortex lattice structure, the
positions of the vortices are totally determined by their
separation. Local energy minimum of the system with the
different number of vortices (from 2 to 7) are compared
and the lowest one is the global energy minimum of the
system, which determines the actual vortex number, con-
figuration, and curvature of the BEC under the given ro-
tation frequency Q.

In order to determine the number of vortices in a con-
densate under different driving frequencies Q, we plot in
Figure 3 the total energy of the system to the distance be-
tween vortices b̄ with Nv = 2, 3, 4, 5 under different value
of driving frequencies Q. The curves formed by dots of
the same color show the energy of the system at discrete
values of b̄. Dots with different color indicate different vor-
tex numbers, and every separation ‘deck’ of dotted curves
correspond to a system under a single Q. Therefore the
color of the lowest dots (global energy minimum) of ev-
ery ‘deck’ tells both the number of vortices contained in
the actual BEC rotating under frequency Ω = Qω⊥ and
determines self-consistently the intervortex separation in
a fixed configuration. By repeating the above procedure
under a series of increasing rotation frequency Q, we find
that the vortices are generated one by one with the in-
crease of Q. Moreover, for the local energy minimum of
the system containing Nv vortices, only when it is also
the global energy minimum of the system, can it be lower
than the local energy minimum of the system with either
Nv − 1 or Nv + 1 vortices.

For cases with more than three vortices, since that
the external trap and stirring perturbation are axial sym-
metric, only two different regular configurations are al-
lowed, as shown in Figures 4–7. From Figures 4, 5 and 6
for Nv = 4, 5 and 6, it was shown that the configuration
with one vortex in the center and others on a circle around
always posses a slightly higher local minimum energy with
the same values of P regardless of the values of Q. The
stable configuration is such that except for the case of one
vortex, no vortex will appear in the center of the trap if
the condensate holds less than seven vortices.

For Nv = 7, however, the configuration with a vortex
in the center, which forms a hexagonal shape as shown
in Figure 7 (right), posses a lower local energy minimum
compared with the configuration of seven vortices on a cir-
cle as shown in Figure 7 (left). The stable configurations
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Fig. 4. Left: four vortices forming a square. Right: one vortex
in the center and three vortices forming an equilateral triangle.
Energy difference between left and right ∆E = EL − ER =
−0.031�ω⊥ with λ = 1, P = 500 and Q = 0.26.

Fig. 5. Left: five vortices forming a pentagonal lattice. Right:
one vortex in the center and four vortices forming a square.
Energy difference between left and right ∆E = −0.029�ω⊥
with λ = 1, P = 500 and Q = 0.29.

Fig. 6. Left: six vortices forming a hexagonal lattice. Right:
one vortex in the center and three vortices forming an equilat-
eral triangle. Energy difference between left and right ∆E =
−0.122�ω⊥ with λ = 1, P = 500 and Q = 0.35.

Fig. 7. Left: seven vortices on a circle. Right: one vortex in the
center and six vortices in a hexagonal lattice. Energy difference
between left and right ∆E = +0.016�ω⊥ with λ = 1, P = 500
and Q = 0.61.

imply that vortices in the equilibrium state will form reg-
ular polynomial cells with the least vortices involved.

3.3 Case with many vortices (Nv ≥ 10)

We assume that the relation between the local energy min-
imum and global minimum of the system is also true for
the larger number of vortices. Therefore we are able to de-
termine the vortex number Nv of the system by compar-
ing it with Nv −1 and Nv +1 vortices without considering
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Fig. 8. Estimated number of vortices in BECs vs. the rotation
frequency Q with λ = 1, P = 100, 500, 1000.
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Fig. 9. The average vortex core width ξ in unit of R⊥ vs. the
rotation frequency Q with λ = 1, P = 500.

other vortex numbers (however, the curvature kj and core
width ξj are self-consistently calculated), which will save
time in the amount of calculation.

For a final stable static state, we are limited to calcu-
lating BECs with only a few particular number of vortices
that will completely fit into a lattice. We study only the
triangular lattices, to approximate for the actual situation
while taking into account the effects of finite numbers of
vortices, finite size and small bending. Through compar-
ing the local energy minimum of different numbers of vor-
tices in the condensate, we plot the estimated number of
vortices as a function of Q with several different P in Fig-
ure 8. This result coincide with the experiments [9] and
numerical results [36,54]. Apparently it is easier to create
more vortices under the same rotation frequency in larger
condensates.

In Figure 9 we show the variation of the average half-
width of vortex cores ξ in unit of R⊥ versus the rotation
frequency Q. The decrease of ξ with increasing Q when Q
is small is expected as usual tendency. However, the in-
crease of ξ with increasing Q when Q is large shows the
impact of boundary effect, when the area occupied by the
total lattice structure became comparable with the total
surface area. In other words, the vortex half width ξ tends
to increase with increasing Nv/N , the ratio of the numbers
of vortices Nv to particles N , when the vortices extend to
the edge of the condensate where the particle density is
much smaller. Moreover, both finite number of vortices
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Fig. 10. Four bent vor-
tices forming a square unit
cell on the xy-plane. At
λ = 1/2, P = 500 and
Q = 0.18, the separation
between the nearest vor-
tices on (z = 0)-plane is
b̄ = 0.75 with the di-
mensionless curvature K =
0.757 and total energy E =
12.45�ω⊥.

Fig. 11. Six bent vor-
tices forming a hexagonal
unit cell on the xy-plane.
At λ = 1/2, P = 500
and Q = 0.24, the sepa-
ration between the nearest
vortices on (z = 0)-plane
is b̄ = 0.71 with the di-
mensionless curvature K =
1.053 and total energy E =
12.30�ω⊥.

and boundary effect always leads to Nv < �R2
⊥/b2� in the

minimal energy calculation.

3.4 Effects of the bending

In order for the energy of the system to be minimized,
vortices in a trapped condensate should adopt a non zero
curvature on z-direction, i.e. bending vortices are ener-
getically more favorable than straight ones in same cases.
In Figures 10 and 11 we plot the case of four and six vor-
tices forming a square and a hexagon unit cell respectively,
in both cases the vortices bent at a certain curvature kj

calculated self-consistently. Moreover, the close stack of
the vortices around the center of the trap as shown below
agrees with the one simulated in [20] but disagrees with
one simulated in [36] which may be caused by not arriv-
ing completely at the equilibrium state. Although when we
study bent vortices, their separation b is slightly greater
than straight ones, it still gives Nv < �R2

⊥/b2�, an effect
of finite number of vortices and finite size. The expand is
similar with the result in [56].

We also show through our calculation that bent vortex
lines are still more energetically favorable than straight
ones for λ < 1 (as shown in Fig. 12 for λ = 1/2), and
triangular unit cells are more energetically favorable than
square cells (not be shown).

The curvature of the jth vortex is kj = Kj s̄j/Rz

and the mean dimensionless curvature of vortex lines is
K = 1

Lv

∑Lv

j=1 Kj with Lv the layer number of the vor-
tex lattice around the trapping center. In Figure 13 we
show the variation of the mean dimensionless curvature
of vortex lines K versus the rotation frequency Q. The
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Fig. 12. Energy of rotating BEC with vortices in unit of �ω⊥
vs. rotation frequency Q with λ = 1/2, P = 500. The solid line
stands for straight vortices and the dashed line stands for bent
ones.
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Fig. 13. The dimensionless curvature of vortex lines K vs. the
rotation frequency Q with λ = 1/2, P = 500.
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Fig. 14. The dimensionless curvature of vortex lines K vs. the
ratio λ with P = 500, Q = 0.24 and Nv = 6.

curvature K first increases and then decreases with the
increasing of Q within the range of calculation. This in-
dicates that straight vortex lines are only good approxi-
mation when the number of vortices both is a few and is
large enough. Of course, the vortex bending occurs at the
boundary where both is the end of the vortex line and is
the maximum value of s̄j .

Curve in Figure 14 shows the monotonic decrease of
the curvature K with the increasing of λ. This agrees with
the numerical[43] and analytical [44,46,51] results.
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4 Conclusion

We have studied the vortex formation in a three dimen-
sional Bose-Einstein condensate using a simple variational
ansatz, emphasizing on the curvature, finite number and
size of vortices. We have calculated the minimal energy
configurations of the vortices as a function of the rota-
tion frequency and obtained the number of vortices, three-
dimensional configuration and curvature of vortex lines in
a self-consistent manner. The effect of finite number of
vortices and finite size shows that the calculated vortex
number is less than one would estimate from the ratio
of the xy-plane area to single vortex area shared in the
xy-plane. The slight expansion of vortex lattice caused by
vortex bending for λ < 1 decreases the difference between
the two.

Our results have explained the experimental observa-
tion of bending vortex lines and triangular vortex lattice.
Our method proves an effective and simple tool to approx-
imately determine certain important behavior of the sys-
tem such as the number of vortices, their curvature and
configurations under different rotation frequencies when
taking into account the effects of number and shape of
the vortex lines. Further theoretical study of vortex lattice
formation and periodic solution of the Gross-Pitaevskii
equation in a three dimensional confined rotating Bose-
Einstein condensate is in progress.

We thank Mr. Wei Zhou for helping to plot two 3D graph-
ics. This work was supported by the National Natural Science
Foundation of China under Grant Nos. 10274012 and 10574028.
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